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ON THERMAL STRESSES IN BEAMS:
SOME LIMITATIONS OF THE ELEMENTARY THEORYt

BRUNO A. BOLEY

College of Engineering, Cornell University, New York 14850

Abstract-Elementary calculations for the axial thermal stresses in beams are compared with those of an exact
theory, and estimates of the difference between the two are given for several important special cases, including
that of thin-walled beams. It is found that the error in the elementary theory is quite large in certain cases (for
example that of a circular section with axisymmetric temperature).

1. INTRODUCTION

THE calculation of normal axial thermoelastic stresses in a free beam is usually carried out
on the basis of the elementary formula [1, p. 310J:

(1)

where T is the temperature,

PT = {exETdA; M T = {exETYdA (1a)

and the other symbols have the usual meanings. Equation (1) holds for arbitrary cross
sectional shapes and temperature variations, provided that the Y and z axes are centroidal
and that the z axis is chosen so as to coincide with the "neutral axis", i.e, the line (which
always exists) for which fA exETz dA = O. If these axes are differently selected, a somewhat
more complicated formula results, but their adoption implies considerable simplification
and no loss of generality. It is furthermore known that corrections to equation (1) must be
added in cases in which the temperature is not linear in x, and that these may at times be of
some importance, but these will not be the subject of the present study.

The present work will be rather concerned with the fact that, for beams of arbitrary
cross-section, the axial stress should be calculated, not from equation (1), but from
[1, p. 329J:

0'* = -exET*+ P~ + M~y
x A I (2)

where
v

T* = T--V2 A..
exE '/" Pi = LexET* dA; M: = LexET*y dA (2a)

t This work was performed under a contract of the Office of Naval Research.
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and where <jJ(y, z) is an Airy stress function satisfying the plane-strain field equation

E a2 a2

'iij4<jJ = - 1!'1._
v

V
2
T, "11 2 = oy2 + OZ2 (3)

and the boundary conditions for traction-free surfaces, namely

(3a)

Little information is available concerning the importance of performing the calculations
on the basis of T* rather than of T, other than some results pertaining to thin-walled
sections (which will be referred to below) and the obvious fact that T* == T, and thus
ax == a:, if Tis plane harmonic. It is the purpose of the present note to examine this question
in some detail, indicating some useful estimates and simplifications.

In general we note that if upper and lower bounds are determined in anyone problem
in such a manner that

vV2<jJ
B < -- == T - T* < BL-!'1.E - u (4)

then the error in the elementary theory, i.e. difference between ax and a:, cannot exceed
the value given by [2J

(4a)

where k is a numerical factor dependent on the beam cross-section. Values of k for several
different shapes are given in [2, 3J; it may be noted here for future reference that for a
rectangular section k = 4/3. Similarly, if it is known that

v1V
2

<jJ1 == IT*-TI < B
!'1.E - ,

where B is equal to the larger one of IBul and IBLI, then

(5)

(Sa)

The bound of equation (4a) will be better than that of equation (Sa) when Bu and BL are of
the same sign, while the opposite is true when Bu > 0 and BL < O. Bounds to be used in
conjunction with either equations (4) or (5) will be discussed in what follows. It will first be
shown in the next section that an alternative manner of obtaining bounds on the error
in terms of Bu, BL and B, without the introduction of the coefficients k, is always available.

2. CALCULATION OF P} AND M}

It will now be shown that in all cases

and (6)

and thus

(6a)
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It follows that, whenever bounds of the type of equation (4) are known, then

a.EBL:s; ui-ux:S; a.EBu
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(7)

(9)

(10)

and that, whenever bounds of the type of equation (5) are available, then

Iu* - Uxl :s; a.EB. (8)

Since k ;;?;: 1 always, equation (8) gives a better bound than equation (Sa), while the relative
merits of equations (7) and (4a) depend on the relative magnitudes of Bu, BL and Bu- BL •

To prove the validity of equations (6), we note that in any problems pertaining (like the
ones presently considered) to traction-free bodies, the average value of the first stress-tensor
invariant ux+uy+uz is zero [1, p. 306]. Inspection of the proof shows that this statement
holds for two-dimensional problems as well, and thus

P*-PT = va.ELV 2<j>dA = vAE L(uy+uz)dA = O.

Further examination of the proof indicates however that

Iv (ux+uy+uz)e dV = 0

for any strain field derivable from a continuously differentiable displacement field in such
a manner that

1 {e for i == j
e.. = 1(u. ·+u· .) =

'J ',J I,) 0 for i =1= j.

The preceding result follows from Ui = Xi and 6 = 1, while if we set

with any fixed k, we obtain in general

(lOa)

(11)

(11a)

(12)

Iv (ux+uy+O'z)xkdV = O.

Since this result again holds also in two-dimensional problem, the second of equations (6)
follows immediately. Furthermore, it is also obvious that the "neutral axis" is the same
for either uxor u~.

The same results could alternatively have been derived by noting that the tractions
acting within the beam on either side of a plane parallel to the xy or the xz plane must be
self-equilibrating.

3. CIRCULAR BAR UNDER T = T(r)

The general solution for the plane-strain problem of a bar of circular cross-section,
solid or hollow, under an axisymmetric temperature distribution is well known [1, p. 290].
It is easily verified from that solution that

V2<b = a.E (_ T + PT )
1 v A
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CI: = aE (_ T + PT ) CIx (I2a)
I-v A I-v'

In this case therefore neglect of the term (vV2</» in equation (2) is clearly not permissible
unless Poisson's ratio is extremely small. The error is

CI:-CIx = vV2
</>

CIx ax

v

I-v'
(13)

It will be shown below that often this is the maximum error to be expected, when referred
to the maximum stress CIxmax '

4. RECTANGULAR BEAM WITH V2 T= CONSTANT

In this case it is convenient to employ the analogy between the boundary-value problem
for </>, equations (3), and the one for the deflection wof a clamped plate under the equivalent
load p* given by

P*

D
(14)

(15)

since the solution for constant p* is well-known [4, 5]. Write the moments M x and My in the
plate in the form

Mx(x,y) = mx(x,y)p*a 2
; My(x,y) = mix,y)p*a2 (14a)

where a is the shorter side of the rectangle Ixl < a12, Iyl < bl2 and where mx and my are
dimensionless coefficients whose values are tabulated for example in the two last-cited
references;t then

rxEV2 T 2.
V2

</> = - -(12 (mx+my)a ,
-v)

To obtain a quantitative estimate of the magnitude of the correction term in a typical
example, let

(16)

where 10.1,2 are constants so that

(I6a)

Numerical values of CIx and a: are plotted in Fig. 1 for v = 0·3; they show that:
(a) The maximum value of vV2 </> occurs on y 0, so that considerable error is noted

on the maximum tensile stress (i.e. the stress with the same sign as To).
(b) The error is smaller at Iyl = b12, i.e. on the maximum compressive stress (i.e. the

stress with the opposite sign to To).

t The values given are easily extended by noting, for example, that my = vmx along Ixl = al2 and mx = vmy
along IYI = b12, because of equations (3a).
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FIG. I. Stresses in rectangular beams.

(c) In all cases

(16b)

as that the error, in this form, never exceeds that of equation (13). Indeed the left-hand side
of (16b) is largest for a square-cross-section, in which case, for v = 0·3 it is 0·264, while
v/(l-v) = 0·429.

(d) The error decreases as alb = R decreases. For small R (say R < 1/2), it can in general
be estimated, by use of Grashofs approximate formula [5], which gives:

or

rxEV2T (a 2-12x2)(b2_4y2)2 +(b2-12y2)(a2_4X2)2
V

2

4J = (I-v) 24(a4 +b4 )

jV2 4J1 < rxEIV
2

Tla
2
(1 +R

2
).

- 12(1- v)(1 +R4
)

(17)

(17a)

Thus for the temperature of equation (16), we have approximately

IlT~ -lTxl max vR 2(1 +R 2
)

----~ 4IlTxl max (l-v)(1 +R )
(l7b)

so that indeed the error approaches zero for very thin sections. This case can however be
treated more generally, i.e. for arbitrary temperatures, as is done next.
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5. THIN-WALLED SECTIONS

(18)

For thin-walled beams of arbitrary cross-section of (not necessarily constant) thickness
h « S, where S is the developed length of the median line, we can solve for </J approximately
to obtain [1, p. 334]:

rxE [ 1 fh l2 12n fh l2 ]V2 </J = --- - T+ - Tdn+ -3 Tn dn
I-v h -h12 h -h12

correctly to first-order terms in the ratio hIS. Here n is the distance measured normal to
the median line n = 0 of the cross-section. Since the right-hand side is of the same form as
expression (1) for (lx in a rectangular section, we know immediately that the correction
required for thin-walled beams in zero if T is independent of or linear with n. In other cases
its magnitude will depend on the maximum temperature variation L\T across the thickness,
and in fact [2]

1 21nl }for 3 ::;; h ::;; 1. 4
< -.

for31~ < .~ - 3
h - 3

(19)

Other bounds can be written, as noted in [2], for other special cases, such as those of
temperatures symmetrical or antisymmetrical about n = O. Clearly all these bounds are
of the type of those of equation (5) and therefore l(l~ -(lxl is immediately given by equation
(8), with B = (4/3)L\T[v/(l-v)].

In the particular example of the temperature of equation (16), but with To a function
of n such that

(20)

then, with the bound of equation (19) and with To = TM I4,

(20a)

6. ELLIPTIC BEAM, V2 T = CONSTANT

As for rectangular beams in Section 4, we obtain from the known clamped plate
solution [4J

(21)

for the ellipse

where

, = xla; 11 = Ylb; R = alb::;; 1.

(21a)

(21b)
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The largest value of V 2<jJ occurs at the end of the minor axis, i.e. at (1,0), or

aEIV2 TI a2

IV
2

<jJ1 s I-v 3(1 +R4 ) +2R2'
(21c)

(22)
Iu:-uxlmax

IUxl max

For any particular temperature distribution the error may be computed as was previously
done and in general, equations (5) and (8) are once again applicable.

For the temperature of equation (16), we have

(
1 y2)

U x = aETo 4- b2 ;

while if the temperature is

(
X2 y2)

T = To a2 + b2 (23)

we have

(
1 x 2 y2) Iu: - uxlmax _ 4v(1 +R2)

O"x aETo 2-a2-b2 ; 100ximax -(I-v)[3(I+R4 )+2R2]' (23a)

It may also be verified that if the above results are expanded in powers of R, the terms
predicted by the thin-walled theory of the preceding article are identical with the first term
of the series, i.e. those valid for very small R.

7. ARBITRARY SECTIONS, V 2 T ONE-SIGNED

In the important class of problems in which a beam is monotonically heated on its
surface it is easily shown (cf. for example [6]) that the maximum temperature TM occurs
on the surface and that

(24)
aT

KV
2
T = at ;;::: °

in this case we can show that the maximum value ofV2<jJ also occurs on the surface and can­
not exceed that given by

(25)V 2<jJ < aETM

- I-v

although no lower bound is readily available. Thus the error on the maximum tensile stress
can be predicted, though that on the maximum compressive stress cannot. The latter could
be considerably larger than the former if stress concentrations due to notches or holes were
present; it was seen not to be so in the preceding examples of the rectangle and the ellipse.
The preceding remarks hold if T > 0, while if T < °they must be modified by reversing
the sign of the stress.

To prove the validity of (25) we reason as follows. The quantity [V 2<jJ +aETj(l- v)] is
harmonic and has therefore its maximum value on the surface. As we have seen, however,
so does T; hence, if it can be shown that V 2 <jJ is opposite in sign to T there, then (for T > 0,
to be specific)

V2 ,j.. aET aETM'1'+--<-­
I-v - i-v (26)
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and (25) follows directly. To prove that V2</J and T are opposite in sign, it is convenient to
refer again to the analogous clamped plate, both because of its perhaps easier visualization
and because some auxiliary conditions (such as those of equilibrium) are more readily
introduced. It is then required to show that for a clamped plate of arbitrary (simply con­
nected) plan form, under an arbitrarily distributed non-negative (say) transverse load
p* S PM' the quantity V2wcannot be negative at the edge. If w were positive at all interior
points of the plate, then clearly at the edge we would need 02w/on2 2: 0, with n the interior
normal; since w = 0 at the edge, this would imply that V2w 2: 0 also. Hence if V2w is to be
negative, w must somewhere be negative near the edge, but cannot be so everywhere in the
plate because the applied load must do positive work. There would then have to be a w = 0
contour (cf. Fig. 2) which, together with a portion of the edge, encloses a region of w < o.

w

FIG. 2. Deflections of a clamped plate.

Within this region however must be at least one locus of points of inflection (i1 in Fig. 2),
i.e. where 02w/on2 = 0, and along which 03w/on3 2: O. This implies that oMJon = Qn 2: 0
there, where Q is the effective transverse shear. Similarly, another locus of inflection points
(i2 in Fig. 2) must exist where oMJon = Qn S 0, with n always indicating the interior
normal. The region enclosed by 11 and 12 (which is necessarily closed since every line which
cuts the w = 0 contour has two inflection points at least) cannot be in transverse force
equilibrium, as indicated in Fig. 2. It follows that w must be everywhere positive in the
interior, and the desired result is proved.
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AOCTpaKT--CpaBHHBaJOTCB 3JIeMeHTapHbIe paC'IeTbI C TO'lHbIMH, ,lIJIB oceBblX TepMH'IeCKHX HanpBlKeHHH B

6aJIKax. ,l:(aJOTclI oueHKH pa3HHU MelK,lIy ,lIByMlI paC'IeTaMH, ,lIJIlI HeKoTopbIX BalKHblX CneUHaJIbHbIX

CJIy'laeB, Y'IHTbIBaJOIUHX TaKlKe TOHKOCTeHHbIe 6aJIKH. OKa3bIBaCTClI, 'ITO norpeWHOCTb B 311eMeHTapHOH

TeopHH O'leHb 6011bwaB ,lIJI1I aeKOTopbIX clly'laeB, Ha npHMep ,l\JIH Kpyrlloro Ce'leHHH C ocecHMMCTPH'IecKOH

TeMnepaTypott.


